
ON APFR OX IMATE CONFIDENCE INTERVALS FOR MEASURES OF CONCORDANCE--ETC(U)
NO0V al A 0 PALACHEK, W R SCHUCANY N00014-75-C 0439

UNCLASSIFIED TR-152 N



E3a

I'll, M-



SOUTHERN METHODIST UNIVERSITY

DTIr4" I ELE --

S JAN 1 2 1982

l: - e cunent, has been app roved
DEPARTMENT OF STATISTICS ,ic xelease and sale; it |c. ;o is unli,, ,.1-d.|

DALLAS, TEXAS 75275

01o 06og ]
,.6'! i O 1



ON APPROXIMATE CONFIDENCE INTERVALS
FOR MEASURES OF CONCORDANCE

by

Albert D. Palachek and William R. Schucany

Technical Report No. 152
Department of Statistics ONR Contract

November, 1981

Research sponsored by the Office of Naval Research
Contract N00014-75-C-0439

Reproduction in whole or in part is permitted
for any purpose of the United States Government

The document has been approved for
public release and sale; its distribution is unlimited

DEPARTMENT OF STATISTICS - _
Southern Methodist University "CTE:

Dallas, Texas 75275



ON APPROXIMATE CONFIDENCE INTERVALS

FOR MEASURES OF CONCORDANCE

Abstract

The use of U-statistics based on rank correlation coefficients in

estimating the strength of concordance among a group of rankers is

examined for cases where the null hypothesis of random rankings is

not tenable. The studentized U-statistic is asymptotically

distribution-free, and the Student-t approximation is used for

small and moderate sized samples. An approximate confidence

interval is constructed for the strength of concordance. Monte

Carlo results indicate that the Student-t approximation can be

improved by estimating the degrees of freedom.
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ON APPROXIMATE CONFIDENCE INTERVALS

FOR MEASURES OF CONCORDANCE

I. Introduction

Solutions to the problem of testing for agreement among n

sets of rankings of k objects have been proposed by Kendall and

Babington-Smith [1939] and Ehrenberg [19521. Kendall and Babington-

Smith proposed the coefficient of concordance W, which is related

2to Friedman's [1937] Xr for two-way analysis of variance using

ranks. Ehrenberg's statistic is the average of the Kendall rank

correlation coefficients T between the (n) pairs of judges. These

statistics have been studied extensively under the usual null

hypothesis of random rankings, which implies that for each judge,

each of the k! permutations of the ranks l,...,k is equally likely

to be assigned to the k objects.

Very little work has been done in the non-null case. Kraemer

[1976] proposed a non-null approximation to the distribution of W,

but this approximation is based on an empirical study using data

generated from a normal components-of-variance model.I.
There are many situations, however, in which it is known

that there is agreement among the judges in the population, and

the investigator would like to estimate the strength of agreement

among the judges. For instance, an investigator may-know that

two populations of judges agree on the preference of k objects

and wishes to know which group holds the preference more strongly.

What is needed in these situations is a parametric measure of the
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intensity with which a preference of objects is held by a group

of judges.

II. Internal Rank Correlation

Quade (19721 proposed a measure of agreement of rankings

that is based on the expected rank correlation between a pair

of independent rankings. Denote the rankings of the objects by

a sample of n judges as X= (Xil,...,Xik)', i1l,...,n. Quade's

measure of concordance, the internal rank correlation, is given by

(2.1) p - E[R(iXj)] , i 0 J,

where X and X are independent rankings and R(-,-) is any rank

correlation coefficient. Two particular measures are those obtained

by using the Spearman [1904] and Kendall [1938] rank correlation

coefficients, which will be denoted as Rs and Rk, respectively.

Under the null hypothesis of random rankings one finds that

p - 0. However, p is positive if there is agreement among the Judges,

andp - 1 when there is perfect agreement. So p measures the intensity

with which a preference of the objects is held by the judges. An inves-

tigator may be interested in estimating p to compare with a "norm" or to

comparewith the estimated internal rank correlations from other populations.

The U-statistic estimator of p is given by

(2.2) = ()-l X

which Quade refers to as the average internal rank correlation.

4
.-._ _.__ _ _ _ _ "-
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The asymptotic (n-) variance of /i R is given by 4cRP where

(2.3) CR = E[ '2 ]

and

R(X) - E[R(Xl,X 2 ) Ix2 - 20 - .

If 4R > 0 then Hoeffding's [1948] results show that the

limiting distribution of ru(R-)// is standard normal. Under

the null hypothesis of random rankings CR = 0 and the limiting

distribution of vn R is degenerate. Under mild regularity condi-

tions given by Quade [1972], however, ;R > 0 when p > 0.

Since R is seldom known, one usually estimates this parameter.

A consistent estimator of R can be obtained from a method of

Sen (1960] and is given by
n -

(2.4) R n-I l

where

(2.5) V (Xi) n1 .. n
n n-i- j -i j ,.

j#i

are the sample components of R.

The asymptotic distribution of / n(R-)//4-- is also standard

normal under the regularity condition CR > 0, and this studentized

U-statistic can be used to construct approximate tests and confi-

dence intervals.

III. Refinement of Interval Estimation

The distributions of studentized U-statistics are often

approximated by the Student-t distribution on n-i degrees of freedom.

p!
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Using this approximation, one can obtain an approximate 100(1-a)%

confidence interval for p as

-t2(n-l) R < p < + t 4(n-1 _

where t (v) is the (l-a)th quantile of the Student-t distribution

on v degrees of freedom.

The choice of n-i degrees of freedom seems reasonable since

E EV(X)
n n-i

However, the sample components are not independent, and the approxi-

mation using n-i degrees of freedom can lead to problems of under-

coverage when estimating p.

To illustrate this we use a model introduced by Mallows [1957]

and later studied by Feigin and Cohen [1978]. Let be a fixed

vector with one of the kI orderings of the integers l,...,k, and for

every possible ranking I let d(xox) denote a "distance" (in a rank

correlation sense) between.xo and x. A model which assigns equal

probabilities to rankings with the same value of d is then

(3.1) Pe x) - c(e)ed(EO'9) , < _ e < 1,

where
CM )-[ I d(3o'y)]

-

y

the summation being over all kt possible rankings. The smaller the

rank correlation of x withao, the smaller the probability of

occurrence of x. The extreme of 0m0 corresponds to perfect con-

cordance and 0-1 corresponds to random rankings.
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Data were generated from this model at various values of 9

using distances based on both the Spearman and Kendall rank

correlation coefficients. These simulations were performed on

the C D C 6600 computer at Southern Methodist University. The

possible rankings were denoted byE, i - l,...,k!, and the x0

vector used was x = (l,2,...,k)'. A uniform (0,1) observation

u was generated by using the C D C pseudorandom number generator

RANF and the generated ranking was then that ranking E which

satisfied

Fi_1 < u < P i

( where F 0  0 and Fi r P(x) for i - l,...,k!

For k = 4, 1000 samples of size n = 25 were generated for

several values of e, and approximate 95% confidence intervals

were obtained for the parameters Ps and pks which are the popula-

tion internal rank correlation measures when using Rs(*,*) and

Rk(*,), respectively.

The empirical coverages that were obtained from these simula-

tions are given in Table 1. The standard error of these proportions

at the nominal level is .0069. Most of these coverages are signi-

ficantly less than .95. Larger samples were also generated for

two configurations using the Kendall distance, and the empirical

coverages are given in Table 2. These show that the coverages

improve when the sample size becomes quite large.

For small and moderate sized samples, however, the intervals

are too small. This problem could be due to the choice of n-i



6

degrees of freedom in the t-approximation. One method of improving

the coverage is that of estimating the degrees of freedom. Hinkley

(1977] has proposed a method of estimating the degrees of freedom

for the studentized jackknife estimator. This method can be used

in the present setting to adjust the interval width only, since R

is invariant to the Jackknife procedure.

The pseudovalues for jackknifing R can be shown to be
n-1

(3.2) p = 2 (X -n- R

for j - 1,...,k. The jackknife variance estimator of R is then

given by
1 n: 2

V E (P -R)
R n(n-1) j.- n,-J

~(3.3)

4 n-i 2
n (n--2 R

Since n V is also a consistent estimator of 4rR, then (R-p)/AFR
R RPR

is asymptotically standard normal if CR > 0.

Hinkley's estimator for the degrees of freedom is given by

2V
2

(3.4) f R -i
n Kn

where
n 4Z (p. -R)

(3.5) K E 1 2 VR
n n(n-l)(n-2) (n-2) 2

[The expression for K given in the Hinkley paper contains a slightn

2error in the coefficient of VR, and the correct expression is given

here in (3.5)]. The estimated degrees of freedom can also be

expressed in terms of the sample components as
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2 (n22

(3.6) f nn R2[( )__ -4 n-l2n--l ll EV~-R]--

The jackknife variance estimator and the degrees of freedom

estimator were used on the data that were generated for Table 1.

Table 3 gives the empirical coverages that were obtained from these

modified approximate 95% confidence intervals. A comparison of these

results with those in Table 1 shows that the empirical coverages

have improved in almost every configuration. Simulations from

samples of size n-10 also show an improvement in coverage when using

the estimated degrees of freedom.

Table 4 gives the average lengths of the confidence intervals

for ps and pk that were obtained when generating samples from the

model using the Kendall distance measure. These average lengths are

larger when estimating the degrees of freedom than when using n-l

degrees of freedom. However, this is expected since the empirical

coverages have increased.

The minimum estimated degrees of freedom are between 2 and 4

for most of the samples generated, and the minimum among all generated

samples is 2.0. However, the average estimated degrees of freedom for

some models was greater than n-l, as can be seen in Table 5. So there

are many instances where the estimated degrees of freedom are larger

than n-l. In these cases the lengths of the confidence intervals are

smaller when estimating the degrees of freedom than when using n-l

degrees of freedom. Nevertheless, as Tables 4 and 5 show, even when

the average estimated degrees of freedom exceeds n-l, the associated

average confidence interval is not shorter.

-L3AL
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IV. Example Application

An investigator is interested in estimating the strength of

agreement of male college students on the importance ordering of

seven basic human needs. These needs are

A) Self-actualization
B) Cognitive needs
C) Physiological needs
D) Aesthetic needs
E) Esteem needs
F) Belongingness and love, and
G) Safety needs.

A sample of 15 male college students was obtained, and each student

ranked the needs based on the criterion of importance. These rankings

are given in Table 6.

The Spearman rank correlation coefficients, Rs(XX,) are found

for every pair of rankings, and from these one obtains the sample

components V (X ) which are also given in Table 6. This leads to
n =i

-- 1n
- ~ VnXV ) .23979

and

I n-2
1 (V(X) - .00910.i-n

Then the variance of R is estimated by

R 4 n-12 ^ .00281.

To estimate the degrees of freedom for the t approximation we

need
n 4
S[V( ) R] - .00286.
1

Using (3.6), the degrees of freedom are estimated by

2 22
0 (13) (.00910)2

fn 1(.00286)- (4 .00910)2 = 14.69
115
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Since t 025 (14.69) = 2.135, an approximate 95% confidence

interval for p is

.23979 - (2.135)/.00281 < p < .23979 + (2.135)/.0081

i.e. .1266 < p < .3530.

This gives an approximate 95% confidence interval for the strength

of agreement among male college students on the ordering of the

seven basic human needs. Notice that for this data set the estimated

degrees of freedom statistic is quite close to n-1. As the Monte

Carlo results suggest, other samples from this same population may

be expected to yield values of f that differ considerably from n-ln

in either direction.

V. Conclusions

Knowledge of the parameter p can be very useful to an investi-

gator who wants to determine the strength of agreement among a

population on the rank-order preference of k objects. This parameter

can be estimated without putting model constraints on the rankings

since the U-statistic estimator is asymptotically distribution-free.

The estimation of p can also be improved by using Hinkley's method

of estimating the degrees of freedom for the Student-t approximation

to the distribution of the studentized U-statistic. This method

provides better coverage by increasing the lengths of intervals that

are too short, and it can lead to more accurate estimation in many

cases by decreasing the lengths of some intervals that are too long.

/
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TABLE 1

Empirical Coverage of Approximate 95% Confidence

Intervals for P and Pk with k-4 and n-25

(1,000 Simulations)

Kendall Distance Spearman distance

o Ps Ok _ _ __ k

.2 .923 .936 .938 .936

.3 .906 .928 .921 .929

.4 .938 .937 .919 .925

.5 .929 .932 .924 .940

.6 .917 .915 .929 .951

.7 .929 .930 .924 .927

.8 .921 .922 .934 .939

.9 .934 .952 .916 .916

. ..... . .. A
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TABLE 2

Empirical Coverage of Approximate 95% Confidence

Intervals for p and pk with k-4

(1,000 Simulations)

n=50 n-75 n-1O0

PS Pk Ps Pk Ps Pk

.3 .914 .922 .942 .946 .942 .945

.6 .926 .927 .944 .948 .936 .938
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TABLE 3

Empirical Coverage of Approximate 95% Confidence Intervals

for ps and pk using Estimated Degrees of Freedom

(1,000 Simulations)

Kendall Distance Spearman distance

_ _Ps k Ps Pk

.2 .946 .951 .939 .938

.3 .927 .941 .970 .980

.4 .953 .951 .938 .942

.5 .938 .937 .937 .948

.6 .927 .926 .951 .958

.7 .935 .938 .939 .941

.8 .924 .928 .941 .947

.9 .934 .953 .926 .926

p



13

TABLE 4

Average Lengths of Approximate 95% Confidence Intervals

for ps and pk using n-i and Estimated Degrees of Freedom

with k-4 and n=25

(1,000 Simulations)

n-i d.f. Est.d.f.

e Ps Ok Ps Ok

.2 .3151 .3216 .3688 .3532

.3 .3943 .3612 .4451 .3932

.4 .4193 .3651 .4556 .3904

.5 .4030 .3438 .4301 .3646

.6 .3542 .2991 .3710 .3130

.7 .2986 .2517 .3093 .2610

.8 .2327 .1968 .2392 .2026

.9 .1919 .1637 .1964 .1678

L- -
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TABLE 5

Average Estimated Degrees of Freedom

for Confidence Intervals for p and pk
Using Kendall Distance with k-4 and n-25

(1,000 Simulations)

e s Pk

.2 13.4 19.0

.3 15.1 19.7

.4 19.3 23.0

.5 23.5 25.4

.6 29.5 29.8

.7 36.2 34.6

.8 42.3 39.2

.9 46.6 42.1
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TABLE 6

Rankings of Basic Human Needs by Male College Students

Basic -i~iman Needs

Student A B C D E F G V(X )

1 4 7 3 2 5 1 6 .20918
2 1 3 4 7 6 2 5 .28571
3 4 7 1 5 6 3 2 .25510
4 1 4 6 7 3 2 5 .17347
5 7 6 3 5 4 2 1 .06122
6 2 5 4 6 3 1 7 .36480
7 3 1 2 6 5 4 7 .18878
8 6 3 2 7 4 1 5 .34439
9 1 4 2 5 6 3 7 .32653

10 2 3 1 4 7 6 5 .05357
11 4 7 3 2 5 1 6 .20918
12 5 6 4 7 3 1 2 .23214
13 3 6 1 7 2 4 5 .35714
14 7 6 1 5 3 2 4 .26275
15 3 4 1 7 2 5 6 .27296



16

REFERENCES

Ehrenberg, A.S.C. On sampling from a population of rankers.
Biometrika, 1952, 39, 82-87.

Feigin, P.D. and Cohen, A. On a model for concordance between
judges. Journal of the Royal Statistical Society, Series B,
1978, 12, 203-213.

Friedman, M. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American
Statistical Association, 1937, 32, 675-701.

Hinkley, D.V. Jackknife confidence limits using Student t
approximations. Biometrika, 1977, 64, 21-28.

Hoeffding, W. A class of statistics with asymptotically normal
distribution. Annals of Mathematical Statistics, 1948, 19,
293-325.

Kendall, M.G. A new measure of rank correlation. Biometrika,
1938, 30, 81-93.

Kendall, M.G. and Babington-Smith, B. The problem of m rankings.
Annals of Mathematical Statistics, 1939, 10, 275-287.

Kraemer, H.C. The small sample nonnull properties of Kendall's
coefficient of concordance for normal population. Journal
of the American Statistical Association, 1976, 71, 608-613.

Mallows, C. L. Non-null ranking models I. Biometrika, 1957,
44, 114-130.

Quade, D. Average internal rank correlation. Technical Report,
Mathematical Centre, University of Amsterdam, 1972.

Sen, P.K. On some convergence properties of U-statistics.
Calcutta Statistical Association Bulletin, 1960, 10, 1-18.

Spearman, C. The proof and measurement of association between
two things. American Journal of Psychology, 1904, 15,
72-101.



SECURITY CLASSIFICATION OF THIS PAGE (Whom Dole )nf)red)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM
R[PORT NUMBER 12. GOVT ACCESSION NO. . RECIPIENT'S CATALOG NUMBER

152 '/7
4. TITLE (iand SubIl) S. TYPE OF REPORT 4 PERIOD COVERO

On Approximate Confidence Intervals for TECHNICAL REPORT
Measures of Concordance s. PERFORMING ORG. REPORT NUMBER

152
7. AUTNOR(a) S. CONTRACT OR GRANT NUM11ER11.)
Albert D. Palachek and William R. Schucany

N00014-75-C-0439

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA I WORK UNIT NUMBERS

Southern Methodist University
Dallas, Texas 75275

II. CONTROLLING OFFICE NAME AND ACDeOSS It. REPORT DATE

Office of Naval Research November 1981
Arlington, VA 22217 is NUMEERoPPAGES17

14. MONITORING AGENCY NAME & AOORESS(II different om Cdmotllind Office) IS. SECURITY CLASS. (of tli report)

IS. OECLASSIFICATION/OOWNGRAOING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thl Report)
This document has been approved for public release and sale; its
distribution is unlimited. Reproduction in whole or in part is
permitted for any purposes of the United States Government.

17. DISTRIBUTION STATEMENT (of Ihe absetrac t ltrd In Slock 20, II dilffeent Item Report)

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Contilnue e e si de II necessary and idenlify by block number)

ABSTRACT (Coi ue n "Vw* aide lln..e*ap med ifts, tv block mnbe*) The use of U-statistics
based on rank correlation coefficients in estimating the strength of concor-
dance among a group of rankers is examined for cases where the null hypothesis
of random rankings is not tenable. The studentized U-statistic is asymptotical y
distribution-free, and the Student-t approximation is used for small and modera e
sized samples. An approximate confidence interval is constructed for the
strength of concordance. Monte Carlo results indicate that the Student-t
approximation can be improved by estimating the degrees of freedom.

DD , 1473 OI NOV IS OBSQLE?3 Unclassified
SI 0102C0O4-6r P01e8ECURqITY CLASSIFICATION OFr THIS PAGE (Iftef Oafs 81fdr~lf)


